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We develop a modetl for the nonlinear oscillations of spherical drops composed of aqueous foam.
Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme.
we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture.
The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal
modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These
eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of
the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the
higher-order shape modes and their parametric coupling to the breathing mode. The proposed
model is used to explain recently obtained experimental data.
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I. INTRODUCTION

Foams and froths are ubiquitous in nature and indus-
try. They are the signature of vigorous, gas-entraining
mixing processes in liquids. A minimalist conception of
a foam would consist of a gas confined as bubbles within
a liquid host. The aqueous foams considered here are
composed of surfactant-bearing water and air bubbles.
A comprehensive review of foam theories and applica-
tions can be found in the textbooks by Edwards et al [1],
Exerowa and Kruglyakov (2], and the article by Kraynik
3]

Theoretical treatments of the unique rheology of foams
go back at least to Mallock [4], who was motivated to
explain the common observation that “A tumbler con-
taining a frothy liquid gives a dull sound when struck”.
Mallock showed that the sound speed for intermediate
void fractions was actually lower than its value for either
the wet limit, cypater = 1500 m/s, or the dry limit, cair
= 340 m/s. This result has been borne out by a century
of subsequent work on bubbly liquids {5]- [9]. and, as
seen later, leads to key insights into the free vibrations
of foam drops.

tElectronic address: rgholt@bu.edu

The present work is motivated by the continuing need
to measure, understand, model and eventually predict
foam mechanics and rheology for wet or dry foams. To
this end, two of the present authors recently described
a non-contact technique in which small samples of foam
("foam drops”, sec Fig. 1) were acoustically levitated
and excited into resonance by modulating the levitation
field [10]. Our technique utilizes acoustic levitation to
provide both non-contact positioning and static and os-
cillatory excitation of foam drops. By measuring the
quadrupole eigenfrequency of a 3.8 mm radius foam drop
to be 63 Hz, we inferred a shear modulus of roughly 73-
78 Pa for a relatively dry foam. This value compared
favorably with experimentally determined moduli utiliz-
ing more traditional contact-based techniques ([11}-[16]).
The same technique has proven successful for determina-
tion of the surface rheological properties of single-phase
liquid drops{17]-[19].

The primary advantages of this acoustic levitation
technique are its elimination of the requirement for sam-
ple contact containment, its ability to test foams of arbi-
trary gas volume fraction. and its ability to excite both
shear and dilatational motion. The technique relies on
a suitable physical model for the dynamic response of
spheroidal foam drops. The heart of this model is the
theoretical description of the foam material. Our carlicr
work [10] modelled the foam as an effective solid clas-



tic medium. While successful in describing the small-
amplitude oscillations of a dry foam with a fixed lattice
of bubbles. such a material description has certain dis-
advantages. First. a foam is ounly solid-like for high gas
volume fractions and small amplitude motion. Second.
such an effective elastic medium theory only implicitly
incorporates the effect of varyving gas volume fraction via
che effective density of the medium. and it cannot capture
the physics of a bubbly mixture. Finally. the gas volume
fraction is a dynamic quantity. and during dilatational
motion of significant amplitude it cannot be treated as
a material constant. We thus need a model capable of
describing wet foams.

The subject of the present paper is a theoretical in-
vestigation of the dynamics of wet foam drops. By us-
ing a bubbly-fluid approach we obtain a model for the
time-dependent response of a foam drop which retains
the nonlinearity of the bubbles response. By lineariz-
ing the equations we elucidate the resonance frequencies
for the breathing and higher-order eigenmodes of a drop.
We treat the coupling of shape and breathing modes, and
investigate numerically the nonlinear equations obtained
for the time evolution and interaction of the modal oscil-
lations. A key feature is the inclusion of a time-varying
void fraction in the equations.

We begin in the next section with an argument for the
relevant physics that must be included in the model.

II. FOAM MECHANICS, RHEOLOGY, AND
DROP DYNAMICS

One of the most important characteristic parameters
of a foam is its gas volume fraction a,, or more commonly
the “void fraction.” A foam's thermodynamic, mechan-
ical. acoustical and rheological properties are sensitive
functions of the void fraction. Three regimes of foam
morphology are typically identified. A “wet foam” (ap-
proximately 0 < g < 0.3) is essentially a bubbly liquid.
The individual bubbles are free to move about within the
liquid. Wet foams cannot support shearing motion, ex-
cept at the surface of the individual bubbles. A “transi-
tional” or “critical foam” (approximately 0.5 < &g < 0.7)
is comprised of bubbles whose dynamics are strongly
interacting, and whose surfaces may be in mechanical
contact with each other. This regime may be usefully
thought of as a phase transition between a liquid and
solid-like state. A critical void fraction marks the point
at which a foam begins to possess solid-like properties,
such as shear wave propagation and yield stress. The crit-
ical void fraction for three-dimensional foams is approxi-
mately 0.67, which geometrically corresponds to random
close packing of bubbles. Finally, a “dry foam” is the
commonly encountered state in which the bubbles. at
least for low to moderate straining rates, have a fixed
position in a lattice. Such foams behave as viscoelastic
solids for sufficiently small straining rates. However, a
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dry foamn may flow as a liquid when strained bevond a
critical point.

Theoretical investigations of rheological properties be-
ain with Derjaguin. [207 who derived an expression for the
shear modulus of an idealized dry foam and showed that
it was linearly proportional to the foam capillary pres-
sure. This result implies that a foam’s modulus should
scale as a;l‘” Subsequent theoretical and numerical
work has concentrated primarily on two-dimensional ge-
ometric models limited to dry foamss. The reader is re-
ferred to references [21) [26] for examples of the ground-
breaking work in this arca and to reference [27] for a
comprchensive review. Several theoretical models have
addressed the unique rheological dependence on void
fraction of foams. Bolton and Weaire [28] introduced
a two-dimensional model that predicts the vanishing of
the shear modulus at a critical void fraction. This model
is strictly valid in the dry limit. In contrast, a static but
bubble-based two-dimensional molecular dyvnamics sim-
ulation [29] captures the transition features using wet-
limit assumptions. The model assumes spherical bubbles
that resist deformation because of their Laplace pres-
sure. Among other things, the model predicts the vanish-
ing of the shear modulus, but the scaling behavior near
the transition is different than that found for drv two-
dimensional models.

It is interesting to qualitatively cousider the dynamics
of foam drops in the limiting cases of wet, critical and
dry. We consider a foam drop surronnded by a gas to
simplify the situation. To engage in cven a brief discus-
sion. we must draw a distinction between the breathing or
monopole mode and the higher-order shape or multipole
modes. since such motions are qualitatively different as
well. First we consider breathing mode oscillations. The
restoring force for perturbations from the drop’s equilib-
rium volume is provided bv the internal pressure of the
individual bubbles within the drop. which will expand
and contract when the drop volume is externally forced.
Surface tension plays a small role, since the Laplace pres-
sure 20/ Ry for a drop of radius Ry is much smalier than
the ambient or atmospheric pressure. The mass is that of
the liquid between the bubbles. Dissipation is provided
by the bulk fluid motion, the surface fluid motions at the
drop surface and at the individual bubble surfaces. and
also by heat transfer and acoustic radiation of the indi-
vidual oscillating bubbles [30]. For critical and dry foamn
drops, a primary difference is that surface tension be-
comes more important as a restoring force because of the
many thin film Auid connecctions which form inside the
drop. The mass continucs to decrcase as the void frac-
tion increases. It is difficult to make any general state-
ment about the effect on dissipation due to increasing
void fraction, except to say that dissipative effects are
growing relative to inertial effects.

For shape oscillations of wet foam drops. the restor-
ing force for perturbations from the drop’s equilibrium
shape is surface tension acting at the drop interface.



Since surface-active agents are present. a local Marangoni
restoring force due to gradients in surface tension also
contributes. The effective mass is once again the mass of
the liquid compounent. The dissipation is more strongly
affected by the surface terms at the drop interface than
for the monopole case, and the thermal and acoustic bub-
ble dissipation terms are negligible. For shape oscilla-
tions of critical and dry foam drops. the internal thin film
flnid connections add stiffness to the drop. plus allowing
the possibility of torsional multipole modes. As for the
monopolc case, the mass is decreasing, and dissipation 1s
again ambiguous as the void fraction increases.

The discussion above has implicitly assumed that the
intcrnal pressure of the mixture inside the drop is uni-
form (except for the Laplace pressure contribution to
the (again assumed uniform) interior bubble pressure).
This will hold true until either the wavelength of incident
sound is short compared to the drop radius R (which will
never happen during standing wave acoustic levitation),
or the velocity of the drop interface R approaches the
speed of sound in the mixture, which is also unlikely.
Uniform mixture pressure implics that all bubbles oscii-
late essentially in phase unless there are wide disparities
in the bubble size distribution, or nonlinear effects dom-
inate.

For both breathing and shape modes, foam drops near
the critical void fraction will experience a sort of mode
dispersion as bubbles begin to strongly interact with their
nearest neighbors. Energy initially concentrated in a
single global drop mode will be dispersed into motion
of small collections of interacting bubbles. The result
may well be an "apparent” increase in damping of the
global observable drop modal oscillation. While this is
highly conjectural, we believe we have indeed observed
the apparent damping effect for forced quadrupole oscil-
lations of near-critical foam drops. For the same liquid
constituent, the quadrupole mode for both wet and dry
foam drops was underdamped and thus a resonance was
observable. However, for ncar critical void fractions the
resonance was unobservable. A detailed investigation of
this effect is a topic for future work.

Thus we turn our attention to a more dynamic and
bubble-based description of a foam, and in so doing we
explicitly incorporate the fact that we utilize acoustics
and acoustic levitation of bounded foam drops in our ex-
periments. We wish to improve upon such existing mod-
els by considering 3-dimensional cases, and by explicitly
incorporating bubbly fluid dynamics and acoustic wave
propagation in our model. We begin here by introducing
a three-dimensional (sphericalty- or axisymmetric) model
for the eigenmodal oscillations of spheroidal foam drops
in the wet limit.

I1I. WAVE EQUATION FOR WET FOAM

In this section we follow ‘3] to introduce the wave eqna-
tion for an aqueous foam in the wet limit. For the en-
visioned applications of this analvsis. the liquid may be
treated as incompressible. Viscous dissipation as it ap-
pears in the norinal stress balance tor individual bubble
oscillations is included. Thennal and acoustic dissipa-
tion are neglected. Likewise. we do not consider processes
such as bubble coalescence. bhreakup. or dissolution which
affect the number of bubbles and/or their equilibrinm
size.

To avoid confusion with the standard notation for ve-
locity potentials (note that several authors use o to de-
note the void fraction). let n; and o, be the fractional
volume concentration. and p; and p, the density of the
liquid and the gas. respectively. Then the density p of
the two-phase mixture is given by

P= P — (]v/pvp \]'}

where oy + a5 = 1. With p, < p; and the assumption
that all bubbles have the same radius a, we obtain the
following approximation for the mixture density:

4
prp(l —ay)., o= Ewa“n. (2)

where n is the number of bubbles per unit volme of the
mixture.

The dynamics of the bubbles in a foam may be treated
with a spherically-symmetric bubble-in-cell scheme. Ac-
cordingly., cach single bubble in the bubbly liquid is
placed in the center of a spherical cell with the radius
A chosen in such a way as to cover the whole bubbly
mixture by cells.
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It should be noted that A.a.«, are variable in time and
space, and a < A <« R typically. Here, R is the radius of
the drop.

Bernoulli’s integral for spherically-symmetric incom-
pressible liquid motion in the cell may be written in the
following form:

3. ol . ata?
P:pa—Pl(aa+§a2>+7(a3a)t—pzr4 . (4

where dots denotes time derivatives, r is the radial co-
ordinate with the origin at the bubble center. v is the
shear kinematic viscosity of the liquid. p, is the liquid
pressure at the bubble wall, which is relared to the gas
bubble pressure p, by the formula



20 pva -
bPg =DPqg = — . (3)
a a

Here, o is the surface tension coefficient and v is the
kinematic viscosity of the liquid. Often. it is treated as
an “effective” viscosity which accounts for dissipation §].

Taking into account that the liquid pressure at the
cell boundary is equal to the pressure of the two-phase
wixture p (5] one can obtain the following generalized
Rayleigh-Plesset equation for radial bubble motion in the
cell:
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The gas pressure in the bubble is assumed to be uni-
form and variable in time and may be calculated via a
polytropic approximation.

20 a\" ™"
Pg = (P0+——) (—) , (7
[ 1s] agp

where « is the polytropic exponent (k = 7, for adia-
batic and k = 1 for isothermal oscillations of the bubbles,
where 7, denotes the gas adiabatic exponent).

Next we outline the approach to obtaining the mixture
wave equation. The conservation equations for the num-
ber of bubbles, the mass of the mixture, and momentum
of the mixture are first linearized about the unperturbed
state of the mixture. For this purpose we introduce small
perturbations p’, o', #. n’. and a’ of the equilibrium val-
ues po, po = Al — ag). Uo = 0, ng, and ap such that
p=po+p. p=po+p, 7 =0,n=mn+n, and
a = ag + a’. Then we linearize cquation (6) and omit
any dissipative terms. Combining these linearized bub-
ble dynamics and mixture equations yields the (inviscid)
cquation of wave propagation in foam mixtures. Here
and in the following we will write this equation in terms
of a velocity potential (7 = V) keeping in mind that
all variables p’, p’, and p are proportional to each other
in the linear approximation.

Il

2, 2 2
%t—.’; _avio- 22 gm0, (8)

20
3kpo + (3k — 1)—

2 = g
5=
3progo(l — ago)
20
2 3kpy + (3k — L)—
2 _ _Lsp 2 a9
“B= T 73 YsB T p1a2

l—ago

Here cg is the speed of sound in a wet foam. wog is
the frequency of free oscillations of single bubble in an
infinite liquid. wp is the frequency of tree oscillations of
bubbles in a foam.

[IV. NORMAL MODES OF A SPHERICAL
FOAM DROP

Let us consider a foam sample consisting of a spherical
liquid drop of radius R with V spherical gas bubbles dis-
persed inside. To derive formulae for the eigenfrequencies
of such a foamn sample. let the wave ficld inside the foam
drop be described by

e = dexpliwt). (9)

where w is the (unknown) frequency of free oscillations.
Substitution of (9) in the wave equation {8) results in
the Helinholtz equation for the amplitude of the velocity
potential ¥

B
™
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The oscillating surface of a foam drop can be expressed
in the following way:

Vip + 420 = 0. (10)

re = Ry + Z b P (cos ) expiwt. (L)

n={)

where P,(cosf) are the Legendre polyvnomials, and the
coefficients b, are the unknown amplitudes of eigenmodal
shape oscillations (b, <« Ry).

The solution of Eqs (9).(10)

o= Z B jal{kr)P,(cos8) exp iwt (12)
=0

describes the velocity potential inside the foam drop.
Here j,, are the spherical Bessel functions, and the B,
are the unknown amplitudes for the acoustic field.

The relationship between b,, and B,, can be found by
matching the normal component of the foam velocity at
the drop wall with the normal displacement of the drop
surface at that point, which in the linear case is

Oy
= =r,. 13
or =Ry (13)

From Eqs (12).(13) and {11) we thus obtain a formula
for the velocity potential in the foam drop
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By imposing normal stress continuity we obtain the
internal pressure

20 o -
= —_—— ( -_— = 1:
p=po+ R (1 — ago) By (15)
X, 2b, galkr .
P0+R—+P1(1 ago) E: jjn(—gcR)—)Pn(COb‘g)exple-
(16)

That pressure must be balanced with sum of the external
pressure and the Laplace pressure p,

b, Py, (cos 8) exp iwt.
(17)

Equating terms with the same n we find the following
cquation:

Wi= on— U(n+ Q)kj'l‘(kRO), n=01... (18)

pl(l - O"yO)Rg Jn(kRO)

Eq. (18) together with Eq. (10) constitute a full set of
cquations to calculate resonance frequencies of a foam

drop.

Let us consider two cases: monopole (breathing) os-
cillations (n = 0) and quadrupole shape oscillations
(n=2).

A Breathing mode oscillations

When n = 0, Eq. (??) becomes:

w'z _ 20k ](,)(kRO) (19)

p((l - ago)RS ]O(kRO)

Using an explicit expression for the spherical Bessel
function of zero order (jo(kRo) = sin(kRo)/kRo) this
equation may be presented in dimensionless form as

B

& sinz (cos;: B su;z) -0 (20)

1+622 2
c? 20
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0 wERE pi(1 — ago)Rocp

For typical parameter values used in our experiments
[10] the dimensionless variables b and s are very small

(b~ 107"% 5 ~ 107" When b and s equal zero. Eq. (20)
reduces to sin(z) = 0. for which the solution is = = 7.
That means that Eq. (20) may be used to calculare a
small correction to that solution.

c=mrw 4 K w. o m=U0.1.. (2h

Substitution of Eq. (21) into Eq. (20} leads to the solu-

tion
1 + hr?
s =m7 <1 - — ~) . (-

which gives the following generalized formula for the free
monopole oscillations of a foam drop (compare to Eq.

(24))
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(23)
It is interesting to note that the effect of including surface
tension is to lowcer the cigenfrequency.
For Ry large cnough to ignore surface tension pressure
(thus letting paramcters b and s go to zero), we obtain

2 “op o4
w' = (24)
3 Rj 3
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Eq. (24) was evaluated for the parameters of a
foam drop taken from the experimental observations [101.
Namely, By = 3.78 mm. 0.3 mm < ag < 0.5 mm. The
normalized frequencies w/wsp versus foam void fraction
ago for m =1 are shown in Fig. 1. The dashed line de-
notes a gas volume fraction agzo = 0.77 of the foam drop
used in [10]. One can see that the monopole frequency
of the foam drop asymptotes to the single bubble result
wsp in the low void fraction limit, and to infinity for a
void fraction of unity. In between these limiting values,
the foam drop frequency is some fraction of wsg.

Typically, Ry > ag, and Eq. (24) may be simplified as
follows

9

2 “sp o=

w = - . 25
3R (25)

—— — 0,0l
m2n2? a3 ¢

- ag[))

Thus, with the Eq. (8) and taking into account that
20 /ag < py one can get the formula for the frequency of
the foam drop monopole oscillations. which looks similar
to the well-known Minnaert formula [31] for single bubble
monopole oscillations

A ‘ Sooll —
w? s 22RO a.=_‘f_’°7(n-_—a”“-)1204 (26)



Here a. is an effective bubble radius. It is easy to es-
timate that for the experimental data (R, = 3.78 mu,
ago =0.77. 0.3 mm < ag < 0.5 mn) the effective bubble
radius a. = 0.88 mm is larger than bubble radius and
smaller than radius of the foam drop (ay < a. < Ry).

These results, especially Eq. (24) may be usefully com-
pared to previous results for the breathing mode of a
compact bubble cloud in water derived hy several au-
thors [32} [35]. I[n those works, the motivation was to
explain low frequency ambient noisc in the occan as due
to collective oscillations of clouds of bubbles. The low
void fraction limit is the same, but the high void frac-
tion limit is not, since in the present case the high void
fraction limit corresponds to the effective mass of the os-
cillator approaching zero, whereas in the bubble cloud
scenario, the high void fraction limit corresponds to a
single bubble of radius R.

It is remarkable that (approximately) the frequency
does not depend on bubble radius, but depends only on
the void fraction of the foam and the radius of the foam
drop. It is clear that the apparent difference between
frequencies for different bubble radii shown in Fig. 1 is
only due to differences in the single bubble frequency wsp
by which we normalize. For instance, when ag = 0.77
{dash line) the frequencies of monopole oscillations for
ag = 0.3mm and ag = 0.5 mm arc cqual to 3708 Hz and
3674 Hz respectively. This strengthens the case for our
working assumption that the most important parameter
is the void fraction - the details of the bubble size distri-
bution should not affect the leading order results.

B Shape mode oscillations

When n = 2 Eq. {?7) becomes:

(27)

This equation may be presented in dimensionless form as

z J2(2)
=2 . 28
11622 Jh(2) (28)

where dimensionless variables z,b,s are defined in Eq.
(20).

To look for the low-frequency solution of this equation
one should use the asymptotic expansion for the spherical
Bessel function of second order when z — 0 [36],

' = (122 s 25 (29)
J'_’(") ~ E - ﬁ : J2("') ~ 152 105“ .

: :?(1-5). (30)

There is one low-frequency solution of this equation
which is approximately equal to

, L .
= 1.{1- 1.s<ﬁ-b>} (31)

In termns of w.

120q,
B=wl{1- T — (32)
TR() {3/\7})() + (3/\' - 1):—‘]
ay
2 80’
Y I — (33)

pl(l - aqO)R;§

Here wyz is the Lamb frequency of quadrupole oscilla-
tions for an inviscid and incompressible liquid drop [37]
of density pi(l — agy) suwrrounded by a vacuum. In our
casc wry =~ 210571 Eq. (32) presents a correction to
that frequency due to foam compressibility. For our ex-
perimental paranmeters the correction term is negligibly
small (~ 107%).

V. COUPLING OF BREATHING AND SHAPE
OSCILLATIONS

Here we consider the influence of breathing
(‘monopole’ or ‘radial’) oscillations on the quadrupole
mode. This corresponds to an experimental situation
in which the breathing mode is directly excited by an
external field with pressure gradients large compared to
the drop radius R.

It is instructive to compare the period of quadrupole
oscillations with the time required for an acoustic wave
to cross the foam drop. At frequencies about 200 57! (see
wre in the previous section) the period of oscillations is
about 3 - 10~%25. The speed of sound for our foam is
¢g ~ 30m/s. Then for a foam drop with radius R =
3.78 mm, the acoustic transit time is about 10~* s which
is much less than the period of the quadrupole mode.
Thus, one can assume the foam drop liquid pressure py
to be uniform in space and variable in time, as was done
for individual bubbles in section 1 above.

As in Section 3, each single bubble in the bubbly liquid
is placed in the center of spherical cell with the radius A
chosen in such a way as to cover the whole bubbly mix-
ture by cells. The only difference is that in Section 3 all
variables were functions of time and space coordinates.
In the present case, all these variables depend only on
time. Thus, Eqgs (2), (3). (5), (7) are valid. but for tem-
poral variations only.

Taking into account that the pressure of the two-phase
mixture py is uniform in spacc and time-dependent. onc



can get the following generalized Rayleigh-Plesset equa-
tion for radial bubble motion in a cell (compare to Eq.

(6)):

(1 - a_;”) ad + ; (1 ~ éa;” + %(ﬁ”) gt = ol > Pd

(34)

Conscrvation of the (incompressible) liquid volunie in

the foam drop leads to the following simple relationship
between bubble and drop radii.

RP-R3=N(a’- ag) . (35)

Egs. (3).(5)-(7),(refR-P-1), and (33) form a complete
nonlinear system that describes radial motion due to
foam drop oscillations.

In case of weak (lincar) oscillations the system may be
reduced to a forced linear oscillator:

é-}-w%é = —Fsinwt, (36)

F=—75
pl<l—aq0 )a%

Here R = (R — Ry)/Ry is the relative foam drop radius
fluctuation, wp is the frequency of free oscillations of
bubbles in foam (see Eq. (8)), Ap is an external driving
{pq = pp + Apsinwt). The Laplace pressure on the drop
wall is neglected.

In order to investigate coupling between breathing
and shape oscillations it is uscful to consider the radial
breathing motion as the base motion (below marked by
an asterisk) and shape oscillations as a perturbation of
this base motion (below marked by a tilde). In the homo-
baric approximation discussed above, the velocity distri-
bution w.(r,t) for monopole oscillations (which satisfies
the mass balance equation for the foam mixture) is given
by

Wy = }—;r. (37)

The dynamic drop shape is expressed by the expansion

= RO+ 3 t)Pafeont). (38)

where P,(cos8) are the Legendre polynomials, R is the
instantaneous foam drop radius and the amplitudes of
eigenmodal shape oscillations b, (b, & Rp) are unknown
functions of time. Our goal is to derive a coupled set of
differential equations for the variables R(t), b, (f).

The velocity distribution and potential inside the foam
drop are:

) R =
w = ()—\: =w,+u = Er - Z nB, (e T P, (cos )

n=1

(39)

R ~
PEv.tP = ;—;?— + Z B, {t)r" P,(cos ) (40)

n=1

Here B, (t) arc the unknown amplitudes of the foam mix-
ture motion duc to shape oscillations.

The relationship between b, (t) and B, (#) can be found
by matching the normal componcent of the foam velocity
at the drop wall with the normal displacement of the drop
surface at that point, which in the lincar approximation
is

wi =P (41)

From Eqgs (38).(39) aud (11) we thus obtain the for-
mulae for the velocity and velocity potential in the foam
drop

_ Rr? -
b FAR2

R - R rrl
w= Er—i— W, w= Z b, — Ebn FPH(COSO).
(13)
In order to derive an approximate equation for drop
shape oscillations let us consider the momentum equation

for the foam mixture,

p— +Vp =0, (44)

where d/dt is the material derivative, and 7 is the veloc-
ity of the mixture (liquid and bubbles move with cqual
velocities). We now take a lincarized form of the radial
component of (44) as follows.

o (0“' 10,28 Haaw*) f B0

ot or Or or
Here p. = pi(l — ay) is a function of time. Integration

over the radial space coordinate r leads to the following
specific form of Bernoulli’'s integral

¢ g -
P (6_:74-w'5}) ~p=U(t). {16)



The function () may he determined by evaluating the
left-hand-side of Eq. (46) at the limits r = r, and r = 0.
We obtain approximately

1 (. R
o1 _'—bn
Rn—l <b" R )

- = - = 50), i, = R,
5 E (bn Rb"> P{cost), wai -,

r=r, n=1

= R" d
n dt

Q

P,(cos ),

r=rs n=1

o i (l——~l)(71—+2)ann(cos 8).
n=1

&

Bloes, =

Then Eq. (??) leads to the following equation for the
evolution of the amplitudes of the axisymmetric modes

(n-Un(n+20c R

b, = 0. 47
p. R3 R (17)

b, +

which taking into account that p.R® = pi(l — ago)R3
may be rewritten as follows

o 2 R _ 2 _ {n=1n(n+2)o
et (dLn - ﬁ) Pn =0 Wi = pi(1 = ago) R
(48)

where wy,, is the Lamb frequency of shape oscillations of
a foam drop with mode number n and effective density
pi(1 = ago). This result is analogous to the well-studied
problem of parametric shape oscillations of single bubbles
in an infinite fluid, see for example {38] and [39].

To obtian an analytical expression, if we consider only
linear foam drop monopole oscillations, then the solution
of Eq. (36) is

Fsinwt

2
wWa

R=- (49)

— 2

and Eq. (48) may be presented in the form of Mathieu's
equation.

o + (K = 2esin27)b, =0, (50)
K=4wi".5= ,,QF,.T=w—t.
w? wh —w? 2

Solutions of Eq. (50) are well studied (see {36}). Therc
exist two types of solutions in the inviscid limit: bounded
(stable) and unbounded (unstable) in time.

VI. NUMERICAL RESULTS
A Nonlinear breathing dynamics

TBD

B Parametric instability

[t is beyoud thie scope of this work to investigate dissi-
pative effects. Nevertheless in the low void fraction limit
we may incorporate the cffects of weak liquid viscosity
into the equation of motion for the shape oscillations de-
scribed by Eq. (48). We give here without derivation the
parametric equation of motion including weak damping
of the shape oscillations:

.. IR . \ N (n—12n+1
bn+’ ey QJ‘” hx" “In T 3G f” = . I = —,———
<R . ) ) ( ’ R) J " pr{l = g0 By

(51)
where 3r, is the classical expression for the weak vis-
cous damping of the shape oscillations of a pure liquid
drop . We integrate Eq. (31) simultaneously with Egs
(34),(5)-(7),(35) to investigate the effect of a time-varying
void fraction on the stability of the spherical foam drop.
The regions of parameter space (. z) where one ob-
tains stable or unstable parametric shape oscillarions are
shown on Fig.2. where stable zones are colored in black.
One can see that the optimal driving frequency leading to
parametric instability is two times larger than the eigen-
frequency of the shape oscillations (K = 1). the 2:1 ex-
ternal resonance.

In Fig. 3 we plot the frequency of quadrupole oscilla-
tions wro/27 and the parametrie driving resonance fre-
quency w = w, = Jwpy versus foam void fraction agy.
For our cxperiments, the w2, ~ 210s™", the frequency
of parametric resonance is w, =420 s~!. It corresponds
to a frequency f = w/27 =~ 65 Hz, which was observed
in experiments [10].

VII. DISCUSSION

A new bubble-based mathematical model of foam drop
dynamics is presented. According to this model different
types of foam drop oscillations arc analyzed. The derived
formulae arc used to explain the experimental data pub-
lished recently {10]. In that work, an experimental tech-
nique was demonstrated for acoustically levitating aque-
ous foam drops and acoustically cxiting their spheroidal
modes. Results were presented in which a foam drop with
gas volume fraction age = 0.77 was levitated at 30 KHz
and excited into a quadrupole resonance at 63£3 Hz.

Here it is shown that monopole (radial} oscillations
and quadrupole (shape) oscillations. for foam parameters
taken from experimental observations. are characterized



by two different scales of frequencies: about 3700 Hz for
monopole oscillations. and about 33 Hz for quadrupole
oscillations.

Monopole frequency. being far from both. levitation
frequency and quadrupole frequency. probably does not
play any role in the phenomenon. The quadrupole os-
cillation may be exited by parametric resonance mech-
anisin.  The highest frequency of the paramnetric exita-
tion is about 65 Hz, which correspouds with experimental
data [101 very well.
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